乳制品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5。现从一批该乳制品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(1)若所抽取的20件乳制品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的乳制品记为,等级系数为5的乳制品记为,现从这5件乳制品中任取两件(假定每件乳制品被取出的可能性相同),写出所有可能的结果,并求这两件乳制品的等级系数恰好相同的概率
设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.
已知函数.(1)求函数的定义域;(2)判断函数的奇偶性.
已知函数.其中a>0且a≠1. (1)若f(x)的图象经过点求a的值; (2)求函数y=f(x)(x≥0)的值域.
已知A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B;(2)若,求实数m的取值范围.
已知函数f(x)=和函数g(x)=x|x﹣m|+2m﹣8,其中m为参数,且满足m≤5.(1)若m=2,写出函数g(x)的单调区间(无需证明);(2)若方程f(x)=在x∈[﹣2,+∞)上有唯一解,求实数m的取值范围;(3)若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得f(x2)=g(x1)成立,求实数m的取值范围.