(本小题满分15分) 若S是公差不为0的等差数列的前n项和,且成等比数列。(1)求等比数列的公比; (2)若,求的通项公式;(3)在(2)的条件下,设,是数列的前n项和,求使得对所有都成立的最小正整数。
(本小题满分12分)已知等比数列中,,公比.(I)为的前n项和,证明:(II)设,求数列的通项公式.
(满分14分)设函数.若方程的根为0和2,且.(1). 求函数的解析式;(2) 已知各项均不为零的数列满足:为该数列的前n项和),求该数列的通项;(3)如果数列满足.求证:当时,恒有成立.
(满分14分)设函数.(1)求的单调区间;(2)若当时,(其中不等式恒成立,求实数m的取值范围;(3)试讨论关于x的方程:在区间[0,2]上的根的个数.
(满分14分)已知一动圆M,恒过点F(1,0),且总与直线相切,(Ⅰ)求动圆圆心M的轨迹C的方程;(Ⅱ)在曲线C上是否存在异于原点的两点,当时,直线AB恒过定点?若存在,求出定点坐标;若不存在,说明理由.
(满分14分)如图,在四面体ABCD中,O、E分别是BD、BC的中点,(Ⅰ)求证:平面BCD;(Ⅱ)求异面直线AB与CD所成角的余弦值;(Ⅲ)求点E到平面ACD的距离.