某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
判断下列函数的奇偶性: (1)f(x)=x3-; (2)f(x)=; (3)f(x)=(x-1); (4)f(x)=.
是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,说明a可取哪些值;如果不存在,请说明理由.
已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.
已知函数f(x)=,x∈[1,+∞). (1)当a=时,求f(x)的最小值; (2)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.
已知函数f(x)=2x-,x∈(0,1]. (1)当a=-1时,求函数y=f(x)的值域; (2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.