(本小题满分13分)如图, 是边长为的正方形,平面,,,与平面所成角为.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
如图,正四棱柱中,,点在上且. (Ⅰ)证明:平面; (Ⅱ)连结,求二面角的正弦值.
已知函数有最小值. (Ⅰ)求实数的取值范围; (Ⅱ)设为定义在上的奇函数,且时,,求的解析式.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点. (Ⅰ)求证:面; (Ⅱ)求点到面的距离.
若函数,的定义域都是集合,函数和的值域分别为和. (Ⅰ)若,求; (Ⅱ)若,且,求实数m的值.
已知椭圆,椭圆的右焦点为F. (1)求过点F且斜率为1的直线被椭圆截得的弦长. (2)求以M(1,1)为中点的椭圆的弦所在的直线方程. (3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦 AB的中点P的轨迹方程.