已知数列、、,点,,在一直线上。(1)求数列的通项公式;(2)若数列满足,求数列的通项公式;(3)若数列的前项和为,且满足(为常数),问点,,,是否在同一直线上,请说明理由。
设函数,若函数在处与直线相切, (1)求实数,的值; (2)求函数上的最大值.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线与曲线交于点(点在第一象限). (Ⅰ)求曲线的方程; (Ⅱ)已知为曲线的左顶点,平行于的直线与曲线相交于两点.判断直线是否关于直线对称,并说明理由.
已知函数,曲线在点处的切线方程为. (1)求的值; (2)求在上的最大值.
设数列的首项为1,前n项和为Sn,且(). (1)求数列的通项公式; (2)设,是数列的前n项和,求.
设的内角,,所对的边长分别为,,且,. (1)若,求的值; (2)若的面积为3,求的值.