(本小题满分12分)已知直线经过抛物线的焦点,且与抛物线交于两点,点为坐标原点.(Ⅰ)证明:为钝角.(Ⅱ)若的面积为,求直线的方程;
已知等差数列的第二项为8,前10项和为185。 (1)求数列的通项公式; (2)若从数列中,依次取出第2项,第4项,第8项,……,第项,……按原来顺序组成一个新数列,试求数列的通项公式和前n项的和
已知△ABC中,各点的坐标分别为,求: (1)BC边上的中线AD的长度和方程; (2)△ABC的面积.
已知对一切恒成立,求实数的取值范围.
已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1). (1)求f(1)、f(4)、f(8)的值; (2)若有f(x)+f(x-2)≤3成立,求x的取值范围.
已知函数. (1)确定的值,使为奇函数; (2)当为奇函数时,求的值域。