如图,四棱锥 P - A B C D 中,底面 A B C D 为菱形, P A ⊥ 底面 A B C D , A C = 2 2 , P A = 2 , E 是 P C 上的一点, P E = 2 E C .
(Ⅰ)证明: P C ⊥ 平面 B E D ; (Ⅱ)设二面角 A - P B - C 为 90 ° ,求 P D 与平面 P B C 所成角的大小
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,.(1)证明:; (2)设PD=AD=1,求点D到平面PBC的距离.
设数列的前n项和为,为等比数列,且 (1)求数列和的通项公式;(2)设,求数列的前n项和Tn
已知定义在区间(-1,1)上的函数为奇函数。且(1)求实数的值。(2)求证:函数(-1,1)上是增函数。(3)解关于.
已知函数.(1)若时函数有极小值,求的值; (2)求函数的单调增区间.
已知函数.(1)求的值;(2)设,求的值.