如图,四棱锥 P - A B C D 中,底面 A B C D 为菱形, P A ⊥ 底面 A B C D , A C = 2 2 , P A = 2 , E 是 P C 上的一点, P E = 2 E C .
(Ⅰ)证明: P C ⊥ 平面 B E D ; (Ⅱ)设二面角 A - P B - C 为 90 ° ,求 P D 与平面 P B C 所成角的大小
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D. 求证:(Ⅰ); (Ⅱ).
已知函数有极小值. (Ⅰ)求实数的值; (Ⅱ)若,且对任意恒成立,求的最大值为.
若函数的图象与直线为常数)相切,并且切点的横坐标依次成等差数列,且公差为 (I)求的值; (Ⅱ)若点是图象的对称中心,且,求点A的坐标
有两个投资项目、,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元) (1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式; (2)现将万元投资A项目, 10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.
已知函数 (Ⅰ)若,求的最大值和最小值; (Ⅱ)若,求的值.