函数 f ( x ) = x 2 - 2 x - 3 ,定义数列 { x n } 如下: x 1 = 2 , x n + 1 是过两点 P ( 4 , 5 ) 、 Q n ( x n , f ( x n ) ) 的直线 P Q n 与 x 轴交点的横坐标。 (Ⅰ)证明: 2 x n < x n + 1 < 3 ; (Ⅱ)求数列 { x n } 的通项公式。
设数列满足为实数 (Ⅰ)证明:对任意成立的充分必要条件是; (Ⅱ)设,证明:; (Ⅲ)设,证明:
已知定义在R上的函数和数列满足下列条件:,,其中a为常数,k为非零常数. (Ⅰ)令,证明数列是等比数列; (Ⅱ)求数列的通项公式; (III)当时,求.
数列{an}的前n项和为Sn,且a1=1,,n=1,2,3,……,求 (I)a2,a3,a4的值及数列{an}的通项公式; (II)的值.
已知{}是公比为q的等比数列,且成等差数列. (Ⅰ)求q的值; (Ⅱ)设{}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由. .
设数列{an}的首项a1=a≠,且, 记,n==l,2,3,…·. (I)求a2,a3; (II)判断数列{bn}是否为等比数列,并证明你的结论; (III)求