乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。 (Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率; (Ⅱ) ξ 表示开始第4次发球时乙的得分,求 ξ 的期望。
设 f ( x ) = a e x + 1 a e x + b ( a > 0 ) .
(I)求 f ( x ) 在 [ 0 , + ∞ ) 上的最小值; (II)设曲线 y = f ( x ) 在点 ( 2 , f ( 2 ) ) 的切线方程为 y = 3 2 x ;求 a , b 的值.
平面图形 A B B 1 A 1 C 1 C 如图所示,其中 B B 1 C 1 C 是矩形, B C = 2 , B B 1 = 4 , A B = A C = 2 , A 1 B 1 = A 1 C 1 = 5 。现将该平面图形分别沿 B C 和 B 1 C 1 折叠,使 △ A B C 与 △ A 1 B 1 C 1 所在平面都与平面 B B 1 C 1 C 垂直,再分别连接 A A 1 , B A 1 , C A 1 ,得到如图2所示的空间图形,对此空间图形解答下列问题
(Ⅰ)证明: A A 1 ⊥ B C ; (Ⅱ)求 A A 1 的长; (Ⅲ)求二面角 A - B C - A 1 的余弦值.
某单位招聘面试,每次从试题库随机调用一道试题,若调用的是 A 类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是 B 类型试题,则使用后该试题回库,此次调题工作结束。试题库中现共有 n+m 道试题,其中有 n 道 A 类型试题和 m 道 B 类型试题,以 X 表示两次调题工作完成后,试题库中 A 类试题的数量。 (Ⅰ)求 X=n+2 的概率; (Ⅱ)设 m=n ,求 X 的分布列和均值(数学期望)。
设函数 f x = 2 2 cos 2 x + π 4 + s in 2 x
(I)求函数 f x 的最小正周期; (II)设函数 g x 对任意 x ∈ R ,有 g x + π 2 = g x ,且当 x ∈ 0 , π 2 时, g x = 1 2 - f x ,求函数 g x 在 - π , 0 上的解析式。
函数 (1)如果函数单调减区调为,求函数解析式; (2)在(1)的条件下,求函数图象过点的切线方程; (3)若,使关于的不等式成立,求实数取值范围.