(本小题满分16分)椭圆:的左、右顶点分别、,椭圆过点且离心率.(1)求椭圆的标准方程;(2)过椭圆上异于、两点的任意一点作轴,为垂足,延长到点,且,过点作直线轴,连结并延长交直线于点,线段的中点记为点.①求点所在曲线的方程;②试判断直线与以为直径的圆的位置关系, 并证明.
已知椭圆的离心率为,左右焦点分别为,且. (1)求椭圆C的方程; (2)过点的直线与椭圆相交于两点,且,求的面积.
在斜三棱柱中,侧面平面,,为中点. (1)求证:; (2)求证:平面; (3)若,,求三棱锥的体积.
已知圆经过坐标原点和点,且圆心在轴上. (1)求圆的方程; (2)设直线经过点,且与圆相交所得弦长为,求直线的方程.
如图,在四棱锥中,底面为矩形,平面,,为中点. (1)证明://平面; (2)证明:平面.
已知为椭圆上的三个点,为坐标原点. (1)若所在的直线方程为,求的长; (2)设为线段上一点,且,当中点恰为点时,判断的面积是否为常数,并说明理由.