(本小题满分12分)设平面α∥β,两条异面直线AC和BD分别在平面α、β内,线段AB、CD中点分别为M、N,设MN=a,线段AC=BD=2a,求异面直线AC和BD所成的角.
(本小题15分)已知(m为常数,m>0且),设是首项为4,公差为2的等差数列. (1)求证:数列{an}是等比数列;(2)若bn=an·,且数列{bn}的前n项和Sn,当时,求;(3)若cn=,问是否存在m,使得{cn}中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,说明理由.
(本小题10分)某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的年平均费用最少?最少是多少?
(本题10分)某家公司每月生产两种布料A和B,所有原料是两种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量。
已知生产每匹布料A、B的利润分别为120元、80元。那么如何安排生产才能够产生最大的利润?最大的利润是多少?
(本小题10分)已知△ABC的内角A、B、C所对的边分别为a,b,c,且a=2, cosB=.(1)若b=4,求sinA的值;(2) 若△ABC的面积S△ABC=4,求b,c的值.
(本题10分)已知等差数列满足,为的前项和.(1)求通项及当为何值时,有最大值,并求其最大值。(2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.