已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(Ⅰ)求圆的方程;(Ⅱ)设直线与圆相交于两点,求实数的取值范围;(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
(本小题满分12分) 设等比数列的前项和为,已知N). (Ⅰ)求数列的通项公式; (Ⅱ)在与之间插入n个数,使这n+2个数组成公差为的等差数列,求数列的前项和.
(本小题满分12分)如图所示,直角梯形ACDE与等腰直角所在平面互相垂直,F为BC的中点,,AE∥CD,. (Ⅰ)求证:∥平面; (Ⅱ)求二面角的余弦值.
(本小题满分12分)已知函数. (Ⅰ)化简函数的解析式,并求其定义域和单调区间; (Ⅱ)若,求的值.
设函数,其中。 (1)当时,在时取得极值,求; (2)当时,若在上单调递增,求的取值范围; (3)证明对任意的正整数,不等式都成立。
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆的短轴端点和焦点所组成的四边形周长等于8。 (Ⅰ)求椭圆的方程; (Ⅱ)若过点的直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求直线的方程。