图形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点.AC,BD交于O点.(1)二面角Q-BD-C的大小:(2)求二面角B-QD-C的大小.
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成的角的余弦值; (Ⅲ)求面与面所成二面角的余弦值。
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为. (Ⅰ)求,,的值;(Ⅱ)求函数的单调递增区间. (Ⅲ)求函数在上的最大值和最小值
抛掷两颗骰子,求: (Ⅰ)点数之和出现7点的概率;(Ⅱ)出现两个4点的概率.
:对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围.
已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,) (Ⅰ)设,求证:当时,; (Ⅱ)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。