某商店试销某种商品20天,获得如下数据:
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。 (1)求当天商品不进货的概率; (2)记 X 为第二天开始营业时该商品的件数,求 X 的分布列和数学期望。
(本小题满分14分) 已知:函数是定义在上的偶函数,当时,为实数). (1)当时,求的解析式; (2)若,试判断上的单调性,并证明你的结论; (3)是否存在,使得当有最大值1?若存在,求出的值;若不存在,请说明理由.
(本小题满分13分) 已知:如图,长方体中,、分别是棱,上的点,,. (1) 求异面直线与所成角的余弦值; (2) 证明平面; (3) 求二面角的正弦值.
(本小题满分13分) 已知:向量与共线,其中A是△ABC的内角。 (1)求:角的大小; (2)若BC=2,求△ABC面积的最大值,并判断S取得最大值时△ABC的形状。
(本小题满分13分) 甲和乙参加智力答题活动,活动规则:①答题过程中,若答对则继续答题;若答错则停止答题;②每人最多答3个题;③答对第一题得10分,第二题得20分,第三题得30分,答错得0分。已知甲答对每个题的概率为,乙答对每个题的概率为。 (1)求甲恰好得30分的概率; (2)设乙的得分为,求的分布列和数学期望; (3)求甲恰好比乙多30分的概率.
(本小题满分13分) 解关于的不等式()。