设是二次函数,方程f(x)=0有两个相等的实根,且(1)求的表达式;(2)求的图象与两坐标轴所围成图形的面积.(3)若直线x=-t(0<t<1)把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.
已知函数.(1)当时,求的单调区间;(2)若不等式有解,求实数m的取值菹围;(3)证明:当a=0时,.
如图,在三棱锥中,直线平面,且,又点,,分别是线段,,的中点,且点是线段上的动点.(1)证明:直线平面;(2)若,求二面角的平面角的余弦值.
设数列的前项和为,已知,,,是数列的前项和.(1)求数列的通项公式;(2)求;(3)求满足的最大正整数的值.
已知()(1)若方程有3个不同的根,求实数的取值范围;(2)在(1)的条件下,是否存在实数,使得在上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.
抛物线,直线过抛物线的焦点,交轴于点.(1)求证:;(2)过作抛物线的切线,切点为(异于原点),(i)是否恒成等差数列,请说明理由;(ii)重心的轨迹是什么图形,请说明理由.