比较下面每小题中两个算式结果的大小(在横线上填“>”、“<”或“=”).(1)32+42 2×3×4;(2)22+22 2×2×2;(3)12+ 2×1×;(4)(-2) 2+52 2×(-2)×5;(5) .通过观察上面的算式,请你用字母来表示上面算式中反映的一般规律.
在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.小明和小强采取了不同的摸取方法,分别是:小明:随机抽取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机地抽取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.
计算:
(1)解方程:(2)解方程组:
如图,已知直线l的解析式为,抛物线y = ax2+bx+2经过点A(m,0),B(2,0),D 三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E, 延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数, 并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.