如图,抛物线y=x2-mx+n与x轴交于A、B两点,与y轴交于点C(0,-1).且对称轴x=l.(1)求出抛物线的解析式及A、B两点的坐标;(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3?若存在,求出点D的坐标;若不存在.说明理由(使用图1);(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).
在一个不透明的盒子中,共有“一白三黑”个围棋子,它们除了颜色之外没有其它区别. (1)随机地从盒中提出子,则提出白子的概率是多少? (2)随机地从盒中提出子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
如图,E是BC的中点,∠1=∠2,AE=DE。 求证:AB=DC
先化简,再求值: ,其中.
如图,一个点从数轴上的原点开始,先向左移动到达点,再向左移动到达点,然后向右移动到达点. (1)用1个单位长度表示,请你在数轴上表示出、、三点的位置; (2)把点到点的距离记为,则= . (3)阅读理解:观察式子:因此可以得到:括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号. 问题解决 若点以每秒的速度向左移动,同时、点分别以每秒、的速度向右移动.设移动时间为秒,试探索:的值是否会随着的变化而改变?请说明理由.
某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):
(1)写出该厂星期一生产工艺品的数量; (2)本周产量中最多的一天比最少的一天多生产多少个工艺品? (3)请求出该工艺厂在本周实际生产工艺品的数量; (4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.