如图,抛物线与轴交于A、B两点,与轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD. (1)求C点的坐标及抛物线的解析式; (2)将△BCH绕点B按顺时针旋转90º后再沿轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由; (3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.
如图,请用尺规作图法,确定出图中残缺的圆形铁片的圆心.
已知:AB交⊙O于C、D,且OA=OB.求证:AC=BD
解方程:
小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).
阅读下面的材料,先完成阅读填空,再将要求答题:,则;①,则;②,则.③ …… 观察上述等式,猜想:对任意锐角,都有.④ (1)如图,在锐角三角形中,利用三角函数的定义及勾股定理对证明你的猜想 已知:为锐角且,求.