设是虚数是实数,且.(1)求的值及的实部的取值范围.(2)设,求证:为纯虚数;(3)求的最小值.
内接于以O为圆心,1为半径的圆,且. (1)求数量积,,; (2)求的面积.
已知函数f(x)=(x2+)(x+a)(aR).(1)若函数f(x)的图象上有与x轴平行的切线,求a的范围;(2)若(-1)=0,(I)求函数f(x)的单调区间;(II)证明对任意的x1、x2(-1,0),不等式|f(x1)-f(x2)|<恒成立.
设复数满足,且在复平面上对应的点在第二、四象限的角平分线上,若,求和的值。
在数列中,,且前项的算术平均数等于第项的倍(). (1)写出此数列的前5项; (2)归纳猜想的通项公式,并加以证明.
若,观察下列不等式:,,,请你猜测满足的不等式,并用数学归纳法加以证明.