已知公比大于 1 的等比数列 { a n } 满足 a 2 + a 4 = 20 , a 3 = 8 .
(1)求 { a n } 的通项公式;
(2)记 b m 为 { a n } 在区间 ( 0 , m ] ( m ∈ N * ) 中的项的个数,求数列 { b m } 的前 100 项和 S 100 .
(本小题满分12分)已知圆:和定点,由圆外一点向圆引切线,切点为,且满足. (1)求实数间满足的等量关系式; (2)求面积的最小值; (3)求的最大值。
(本小题满分12分) 已知椭圆的离心率,过点和的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。
(本小题满分12分)一个四棱锥的直观图和三视图如图所示: (1)求证:⊥; (2)求出这个几何体的体积。 (3)若在PC上有一点E,满足CE:EP=2:1,求证PA//平面BED。
已知直线与圆的交点为A、B, (1)求弦长AB; (2)求过A、B两点且面积最小的圆的方程.
(本小题满分12分) 设函数(为自然对数的底数),(). (1)证明:; (2)当时,比较与的大小,并说明理由; (3)证明:().