已知公比大于 1 的等比数列 { a n } 满足 a 2 + a 4 = 20 , a 3 = 8 .
(1)求 { a n } 的通项公式;
(2)记 b m 为 { a n } 在区间 ( 0 , m ] ( m ∈ N * ) 中的项的个数,求数列 { b m } 的前 100 项和 S 100 .
2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表: (1)完成被调查人员的频率分布直方图; (2)若从年龄在,的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望.
已知公差不为0的等差数列的前n项和为,,且成等比数列. (1)求数列的通项公式; (2)设,求数列的前n项和.
已知函数. (1)求函数的最大值; (2)若直线是函数的对称轴,求实数的值.
已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的(且),存在,使得,则称具有性质. (Ⅰ)已知函数,,判断是否具有性质,并说明理由; (Ⅱ)已知函数若具有性质,求的最大值; (Ⅲ)若函数的定义域为,且的图象连续不间断,又满足, 求证:对任意且,函数具有性质.
已知点,点为直线上的一个动点. (Ⅰ)求证:恒为锐角; (Ⅱ)若四边形为菱形,求的值.