已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2: x = t + 1 t , y = t - 1 t (t为参数).
(1)将C1,C2的参数方程化为普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.
(本小题满分12分)已知三棱柱中,侧棱垂直于底面,,,,,点在上.(1)若是中点,求证:平面;(2)当时,求二面角的余弦值.
(本小题满分12分)已知数列是公差不为的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.
已知函数f(x)=|x﹣4|﹣t,t∈R,且关于x的不等式f(x+2)≤2的解集为[﹣1,5].(1)求t值;(2)a,b,c均为正实数,且a+b+c=t,求证:++≥1.
在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(,),半径r=,点P的极坐标为(2,π),过P作直线l交圆C于A,B两点.(1)求圆C的直角坐标方程;(2)求|PA|•|PB|的值.
如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,连接AC,过点A作AD⊥CD于点D,交⊙O于点E.(Ⅰ)证明:∠AOC=2∠ACD;(Ⅱ)证明:AB•CD=AC•CE.