已知函数在上是单调递增函数,求实数的取值范围.
已知数列{}的前n项和 (n为正整数)。(1)令,求证数列{}是等差数列,并求数列{}的通项公式;(2)令,,求并证明:<3.
已知椭圆C:(a>b>0),过点(0,1),且离心率为.(1)求椭圆C的方程;(2)A,B为椭圆C的左右顶点,直线l:x=2与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.
己知a∈R,函数(1)若a=1,求曲线在点(2,f (2))处的切线方程;(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.
如图①,已知ABC是边长为l的等边三角形,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图②所示的三棱锥A-BCF,其中BC=.(1)证明:DE//平面BCF;(2)证明:CF平面ABF;(3)当AD=时,求三棱锥F-DEG的体积
爸爸和亮亮用4张扑克牌(方块2,黑桃4,黑桃5,梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回.(1)若爸爸恰好抽到了黑桃4.①请把右面这种情况的树形图绘制完整;②求亮亮抽出的牌的牌面数字比4大的概率.(11)爸爸、亮亮约定,若爸爸抽到的牌的牌面数字比亮亮的大,则爸爸胜;反之,则亮亮赢,你认为这个游戏是否公平?如果公平,请说明理由,如果不公平,更换一张扑克牌使游戏公平.