求证:如果共点的三条直线两两垂直,那么它们中每两条直线确定的平面也两两垂直.
(本小题满分12分) 已知点是椭圆上一点,是椭圆的两焦点,且满足 (Ⅰ) 求椭圆的两焦点坐标;(Ⅱ) 设点是椭圆上任意一点,如果最大时,求证、两点关于原点不对称.
(本小题满分12分)已知是奇函数.(Ⅰ) 求的值;(Ⅱ) 若关于的方程有实解,求的取值范围.
(本小题满分13分)已知函数,的最大值为,最小值为.(Ⅰ)求的最小正周期;(Ⅱ)求的单调递增区间.
(本小题满分13分)已知向量.(Ⅰ)若三点共线,求实数的值;(Ⅱ)若为直角,求实数的值.
给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程及其“伴随圆”方程;(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的“伴随圆”相交于M、N两点,求弦MN的长;(3)点是椭圆的“伴随圆”上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:⊥.