(本小题满分14分)如图几何体,是矩形,,,为上的点,且.(1)求证:;(2)求证:.
已知函数 (Ⅰ)求的单调区间; (Ⅱ)若,,求的取值范围.
设函数,且为的极值点. (Ⅰ) 若为的极大值点,求的单调区间(用表示); (Ⅱ)若恰有1解,求实数的取值范围.
设正数数列的前项和为,且, (Ⅰ)试求,, (Ⅱ)猜想的通项公式,并用数学归纳法证明
已知抛物线和若有且仅有一条公切线,求出公切线的方程
定义在R上的函数满足对任意实数,总有,且当时,. (1)试求的值; (2)判断的单调性并证明你的结论; (3)设,若,试确定的取值范围.