如图,动点P从单位正方形ABCD顶点A开始,顺次经B、C、D绕边界一周,当x表示点P的行程,y表示PA之长时,求y关于x的解析式,并求f()的值.
已知双曲线的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,,,过点F的直线与双曲线右支交于点.(Ⅰ)求此双曲线的方程;(Ⅱ)求面积的最小值.
如图,平面AEB,,,,,,,G是BC的中点.(Ⅰ)求证:;(Ⅱ)求二面角的大小.
已知,,是否存在实数,使同时满足下列两个条件:(1)在上是减函数,在上是增函数;(2)的最小值是,若存在,求出,若不存在,说明理由.
已知动圆过定点,且与直线 相切.(1)求动圆的圆心M的轨迹C的方程;(2)抛物线C上一点,是否存在直线与轨迹C相交于两不同的点B,C,使 的垂心为?若存在,求直线的方程;若不存在,说明理由.
已知函数.(1)若时,取得极值,求实数的值; (2)求在上的最小值;(3)若对任意,直线都不是曲线的切线,求实数的取值范围.