如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N。(1)求证:MN=AM+BN;(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由。
已知:关于的方程有两个不相等的实数根.(1)求的取值范围;(2)抛物线:与轴交于、两点.若且直线:经过点,求抛物线的函数解析式;(3)在(2)的条件下,直线:绕着点旋转得到直线:,设直线与轴交于点,与抛物线交于点(不与点重合),当时,求的取值范围.
生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中的纸条按图②方式拉紧,压平后可得到图③中的正五边形(阴影部分表示纸条的反面). (1)将两端剪掉则可以得到正五边形,若将展开,展开后的平面图形是 ; (2)若原长方形纸条(图①)宽为2cm,求(1)中展开后平面图形的周长(可以用三角函数表示).
图①表示的是石景山某商场2012年前四个月中两个月的商品销售额的情况,图②表示的是商场家电部各月销售额占商场当月销售总额的百分比情况,观察图①、图②解答下列问题:(1)商场前四个月财务结算显示四月份商场的商品销售额比一月份下降了20%,请你求出商场四月份的销售额;(2)若商场前四个月的商品销售总额一共是500万元,请你根据这一信息将图①中的统计图补充完整;(3)小明观察图②后认为,商场家电部四月份的销售额比三月份减少了,你同意他的看法吗?请你说明理由.
如图,AB是⊙的直径,弦CD与AB交于点E,过点作⊙的切线与的延长线交于点,如果,,为的中点.(1)求证:;(2)求AB的长.
如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,联结EF、EC、BF、CF.(1)四边形AECD的形状是 ;(2)若CD=2,求CF的长.