在中,角的对边分别是已知向量,且.(1)求角的大小; (2)若面积的最大值。
(本小题满分14分)(Ⅰ)已知,,求的最小值。(Ⅱ)已知,求证:。
设数列前项和为,且。其中为实常数,且。(1)求证:是等比数列;(2)若数列的公比满足且,求的通项公式;(3)若时,设,是否存在最大的正整数,使得对任意均有成立,若存在求出的值,若不存在请说明理由。
(本小题满分14分)已知,若函数在区间上的最大值为,最小值为,令. (1)求的函数表达式;(2)判断函数在区间上的单调性,并求出的最小值.
(本小题满分14分)已知直线:y=k(x+2)与圆O:x2+y2=4相交于不重合的A、B两点,O是坐标原点,且三点A、B、O构成三角形.(1)求k的取值范围;(2)三角形ABO的面积为S,试将S表示成k的函数,并求出它的定义域;(3)求S的最大值,并求取得最大值时k的值.
.(本小题满分14分)电视台应某企业之约播放两套连续剧.其中,连续剧甲每次播放时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次播放时间为40min,其中广告时间为1min,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min广告,而电视台每周只能为该企业提供不多于320min的节目时间(此时间不包含广告).如果你是电视台的制片人,电视台每周播映两套连续剧各多少次,才能获得最高的收视率?