如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.
某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:
若广告费支出与销售额回归直线方程为. (1)试预测当广告费支出为12万元时,销售额是多少? (2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,点E为AB上一点,且,点F为PD中点. (Ⅰ)若,求证:直线AF平面PEC ; (Ⅱ)是否存在一个常数,使得平面PED⊥平面PAB,若存在,求出的值;若不存在,说明理由,
在中,角所对的边分别为,已知, (1)求的大小; (2)若,求的取值范围.
(本小题满分10分)选修4-5:不等式选讲 设函数. (1)解不等式; (2)若对一切实数均成立,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线,直线(t为参数). (1)写出曲线C的参数方程,直线的普通方程; (2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.