如图,在菱形ABCD中,点E,F分别为边BC,CD的中点,连接AE,AF.求证:△ABE≌△ADF.
某小区计划在一个长 40 米,宽 26 米的矩形场地ABCD 上修建三条同样宽的小路,使其中两条与AB平行,另一条与 AD平行,其余部分种草,如图若使每一块草坪的面积都为144 平方米,求小路的宽度.
如图1,P(2,2),点A在x轴正半轴上运动,点B在y轴上运动,且PA=PB.(1)求证:PA⊥PB;(2)若点A(8,0),求点B的坐标;(3)求OA – OB的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.
如图1,在等边△ABC的边AC的延长线上取一点E,以CE为边作等边△CDE,使它 与△ABC位于直线AE的同侧. (1)同学们对图1进行了热烈的讨论,猜想出如下结论,你认为正确的有______(填序号). ①△ACD≌△BCE;②△ACP≌△BCQ; ③△DCP≌△ECQ; ④∠ARB=60°; ⑤△CPQ是等边三角形. (2)当等边△CED绕C点旋转一定角度后(如图2),(1)中有哪些结论还是成立的? 并对正确的结论分别予以证明.
如图,已知△ABC中,∠B=∠C,AB=AC=12cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由点C向A点运动. (1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由. (2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在边AC、BC边上,且AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF(2)试判断△DFE的形状,并说明理由.