(本小题满分12分)已知函数(1)当时,求曲线在点处的切线方程;(2)当时,若在区间上的最小值为-2,求的取值范围;(3)若对任意,且恒成立,求的取值范围。
f(x)=sin2x+(>0),且函数y=f(x)的图象相邻两条对称轴之间的距离为。 (1)求的值及f(x)的单调递增区间;
已知是定义在上的奇函数,当时, (1)求的解析式; (2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。 (3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖。求证:若时,函数在区间上被函数覆盖。
(本大题13分)设、为函数图象上不同的两个点, 且 AB∥轴,又有定点,已知是线段的中点. ⑴ 设点的横坐标为,写出的面积关于的函数的表达式; ⑵ 求函数的最大值,并求此时点的坐标。
(本题满分12分) 设函数(,为常数),且方程有两个实根为. (1)求的解析式; (2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
设函数是定义在上的减函数,并且满足, (1)求,,的值,(2)如果,求x的取值范围。