已知数列是等差数列,其前n项和为, (1)求数列的通项公式;(2)设p、q是正整数,且p≠q,证明:
已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大.
如图,在四棱锥中,四边形是菱形,,E为PB的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.
已知函数.(Ⅰ)求函数最大值和最小正周期;(Ⅱ)设的内角的对边分别为,且,若,求的值
若均为正实数,并且,求证:
以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.