已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大.
ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD. (1)求证:PA⊥BD; (2)若PC与CD不垂直,求证:PA≠PD.
若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m. (1)若x2-1比1远离0,求x的取值范围; (2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab.
已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围.
证明:,,不能为同一等差数列中的三项.
设a、b、c均为大于1的正数,且ab=10,求证:logac+logbc≥4lgc.