设数列满足 ①求的通项公式;②设,求数列的前n项和。
(本题满分12分)已知数列的前 n项和为,满足,且.(Ⅰ)求,; (Ⅱ)若,求证:数列是等比数列。(Ⅲ)若 , 求数列的前n项和。
(本题满分12分)如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。(1)求证:CD⊥AE;(2)求证:PD⊥面ABE。
(本题满分12分)为调查某工厂工人生产某种产品的能力,随机抽查了一些工人某天生产产品的数量,产品数量的分组区间为[45,55), [55,65), [65,75), [75,85), [85,95),由此得到频率分布直方图如图所示,保存中不慎丢失一些数据,但已知第一组 ([45,55) ]有4人;(Ⅰ)求被抽查的工人总人数n及图中所示m为多少;(Ⅱ)求这些工人中一天生产该产品数量在[55,75)之间的人数是多少。
(本题满分10分)在△ABC中,角A、B、C的对边分别为、b 、c,且满足。(Ⅰ)求角B的值;(Ⅱ)设,当取到最大值时,求角A、角C的值。
(本小题满分13分)已知椭圆的离心率,且短半轴为其左右焦点,是椭圆上动点.(Ⅰ)求椭圆方程;(Ⅱ)当时,求面积;(Ⅲ)求取值范围.