(本小题满分12分)已知椭圆上的任意一点到它的两个焦点, 的距离之和为,且其焦距为.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.
如图1,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2). (Ⅰ)求证:; (Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由; (Ⅲ)求二面角的正弦值.
已知函数的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在中,角对边为,,且满足. (Ⅰ)求的面积; (Ⅱ)求函数的单调递增区间.
已知函数,其中. (Ⅰ)若,求函数的极值点; (Ⅱ)若在区间内单调递增,求实数的取值范围.
已知圆心为点的圆与直线相切. (1)求圆的标准方程; (2)对于圆上的任一点,是否存在定点(不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.
如图,在四棱锥中,⊥平面,底面为梯形,∥,⊥,,点在棱上,且. (1)当时,求证:∥面; (2)若直线与平面所成角为,求实数的值.