(本小题14分)已知为实数,是函数的一个极值点。(Ⅰ)求的值;(Ⅱ)若函数在区间上单调递减,求实数的取值范围;(Ⅲ)设函数,对于任意和,有不等式恒成立,求实数的取值范围
(本小题满分10分)某大学志愿者协会是由中文系、数学系、英语系以及其它系的一些志愿者组成,各系的具体人数如下表:(单位:人)
现需要采用分层选样的方法从中选派10人到山区进行支教活动(Ⅰ)求各个系需要派出的人数;(Ⅱ)若需要从数学系和英语系中选2人当领队,求2个领队恰好都是数学系学生的概率.
(本小题满分12分)已知是椭圆的两焦点,是椭圆在第一象限弧上一点,且满足过点作倾斜角互补的两条直线分别交椭圆于两点,(1)求点坐标;(2)求证:直线的斜率为定值;(3)求面积的最大值.
(本小题满分12分)如图,在四棱锥中,平面平面,∥,已知(1)设是上的一点,求证:平面平面;(2)当三角形为正三角形时,点在线段(不含线段端点)上的什么位置时,二面角的大小为
(本小题满分12分)已知动圆过定点,且在轴上截得弦长为,设该动圆圆心的轨迹为曲线(1)求曲线方程;(2)点为直线:上任意一点,过作曲线的切线,切点分别为,求证:直线 恒过定点,并求出该定点.
如图,正方形所在平面与平面垂直,是和的交点,且. (1)求证:⊥平面; (2)求直线与平面所成角的大小.