已知函数(1)是否存在实数,使函数是上的奇函数,若不存在,说明理由,若存在实数,求函数的值域;(2)探索函数的单调性,并利用定义加以证明。
选修4—4;坐标系与参数方程 在平面直角坐标系xOy中,已知曲线,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线. (1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线 试写出直线的直角坐标方程和曲线的参数方程; (2)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
选修4-1:几何证明选讲 在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D. (1)求证:; (2)若AC=3,求的值.
已知椭圆:的左、右顶点分别为,,为短轴的端点,△的面积为,离心率是. (Ⅰ)求椭圆的方程; (Ⅱ)若点是椭圆上异于,的任意一点,直线,与直线分别交于,两点,证明:以为直径的圆与直线相切于点 (为椭圆的右焦点).
已知函数在处的切线斜率为零. (Ⅰ)求和的值; (Ⅱ)求证:在定义域内恒成立; (Ⅲ) 若函数有最小值,且,求实数的取值范围.
如图1,在边长为的正三角形中,,,分别为,,上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结,.(如图2) (Ⅰ)求证:⊥平面; (Ⅱ)求直线与平面所成角的大小.