如图,已知:椭圆的中心为,长轴的两个端点为,右焦点为,.若椭圆经过点,在上的射影为,且△的面积为5.(Ⅰ)求椭圆的方程;(Ⅱ)已知圆:=1,直线=1,试证明:当点在椭圆上运动时,直线与圆恒相交;并求直线被圆截得的弦长的取值范围.
在长方体ABCD—A1B1C1D1中,,点E是棱AB上一点.且.(1)证明:;(2)若二面角D1—EC—B的大小为,求的值.
选修4—5:不等式选讲已知,,为正实数,若,求证:.
选修4—4:坐标系与参数方程 在直角坐标系中以为极点,轴正半轴为极轴建立坐标系.圆,直线的极坐标方程分别为.
选修4—2:矩阵与变换 已知矩阵,若矩阵属于特征值6的一个特征向量为,属于特征值1的一个特征向量为.求矩阵的逆矩阵.
选修4—1:几何证明选讲如图,⊙为四边形的外接圆,且,是延长线上一点,直线与圆相切.求证:.