如图,已知:椭圆的中心为,长轴的两个端点为,右焦点为,.若椭圆经过点,在上的射影为,且△的面积为5.(Ⅰ)求椭圆的方程;(Ⅱ)已知圆:=1,直线=1,试证明:当点在椭圆上运动时,直线与圆恒相交;并求直线被圆截得的弦长的取值范围.
已知曲线在处的切线方程是. (1)求的解析式; (2)求曲线过点的切线方程.
如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ,边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4 万元. (1)求总费用y关于θ的函数. (2)求最小的总费用和对应θ的值.
已知为坐标原点,=(),=(1,),. (1)若的定义域为[-,],求y=的单调递增区间; (2)若的定义域为[,],值域为[2,5],求的值.
已知0<x<.,sin(-x)=,求的值.
已知,,且与夹角为120°求 (1);(2);(3)与的夹角