已知大西北某荒漠上A、B两点相距2km,现准备在荒漠上开垦出一片以AB为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8km,问农艺园的最大面积能达到多少?
已知函数 f ( x ) = 2 x - b ( x - 1 ) 2 ,求导函数 f ` ( x ) ,并确定 f ( x ) 的单调区间.
甲、乙等五名奥运志愿者被随机地分到 A , B , C , D 四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加 A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量 ξ 为这五名志愿者中参加 A 岗位服务的人数,求 ξ 的分布列.
如图,在三棱锥 P - A B C 中, A C = B C = 2 , ∠ A C B = 90 ° , A P = B P = A B , P C ⊥ A C .
(Ⅰ)求证 P C ⊥ A B ; (Ⅱ)求二面角 B - A P - C 的大小; (Ⅲ)求点 C 到平面 A P B 的距离.
(本小题共13分) 已知函数()的最小正周期为. (Ⅰ)求的值; (Ⅱ)求函数在区间上的取值范围.
设函数 f ( x ) = ln x 1 + x - ln x + ln ( x + 1 ) . (Ⅰ)求 f ( x ) 的单调区间和极值; (Ⅱ)是否存在实数 a ,使得关于 x 的不等式 f ( x ) ≥ a 的解集为(0,+ ∞ )?若存在,求 a 的取值范围;若不存在,试说明理由.