学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.(1)试求的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
已知函数. (1)当时,求函数的单调区间; (Ⅱ)当时,不等式恒成立,求实数的取值范围. (Ⅲ)求证:(,e是自然对数的底数). 提示:
已知数列的前项和,满足:. (Ⅰ)求数列的通项; (Ⅱ)若数列的满足,为数列的前项和,求证:.
如图,在长方体中,,点E为AB的中点. (Ⅰ)求与平面所成的角; (Ⅱ)求二面角的平面角的正切值.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数. (Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋. (Ⅰ)写出数量积X的所有可能取值; (Ⅱ)分别求小波去下棋的概率和不去唱歌的概率.