设是双曲线的两个焦点,点在双曲线上,且,求△的面积。
已知函数f (x)=lnx,g(x)=ex.(I)若函数φ (x) =" f" (x)-,求函数φ (x)的单调区间;(Ⅱ)设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.注:e为自然对数的底数.
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知过点的直线与椭圆交于,两点.(ⅰ)若直线垂直于轴,求的大小;(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
函数的定义域为R,数列满足(且).(Ⅰ)若数列是等差数列,,且(k为非零常数, 且),求k的值;(Ⅱ)若,,,数列的前n项和为,对于给定的正整数,如果的值与n无关,求k的值.
如图(1)在等腰中,D,E,F分别是AB,AC和BC边的中点,,现将沿CD翻折成直二面角A-DC-B.(如图(2)) (I)试判断直线AB与平面DEF的位置关系,并说明理由;(II)求二面角E-DF-C的余弦值;(III)在线段BC是否存在一点P,但APDE?证明你的结论.
在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=,b=3,sinC=2sinA.(Ⅰ)求c的值;(Ⅱ)求 的值.