某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°. (1)如图1,当∠C=45°时,请写出图中一对相等的线段;_________________ (2)如图2,若BD=2,BA=,求AD的长及△ACD的面积.
已知一元二次方程x2+ax+a-2=0. (1)求证:不论a为何实数,此方程总有两个不相等的实数根; (2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式; (3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.
已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围. (1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=________. (2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围. ①请在图1中补全小贝同学翻折后的图形; ②m的取值范围是____________.
如图,已知,以为直径,为圆心的半圆交于点,点为弧CF的中点,连接交于点,为△ABC的角平分线,且,垂足为点. (1)求证:是半圆的切线; (2)若,,求的长.
如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点. (1)求证:△MDC是等边三角形; (2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.