如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作:(1) 利用网格确定该圆弧所在圆的圆心D点的位置,则D点坐标为 ;(2) 连接AD、CD,则⊙D的半径为 (结果保留根号),∠ADC的度数为 ;(3) 若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.(结果保留根号).(本题10分)
已知AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F,求证:∠FAC=∠B.
(1)如图,直角三角形ABC,∠C=90°,AC=8,BC=6,请在BC的延长线上找一点D,使△ABD为等腰三角形,画出图形,并在图中标出AD和CD的长,并写出其周长(不要过程). (2)画出下面几何体的三视图.
化简,并选一个你喜欢的数代入求值.(8分) .
解下列方程(本题共3个小题,每小题4分,共12分) (1)x2-2x-7=0(配方法); (2)5x(2x-3)-(3-2x)=0(分解因式法); (3)2x2-9x+8=0(公式法).
某商场将进价为30元的书包以40元售出, 平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。(3)请分析并回答售价在什么范围内商家就可获得利润。