某商场将进价为30元的书包以40元售出, 平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。(3)请分析并回答售价在什么范围内商家就可获得利润。
请你设计一个转盘游戏,使获一等奖的机会为,获二等奖的机会为,获得三等奖的机会为,并说明你的转盘游戏的中奖概率.
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF. (1)求证:DE是⊙O的切线; (2)若AB=6,BD=3,求AE和BC的长.
如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.
如图,在Rt△ABC中,∠ACB=90°,∠B =60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α. (1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________; ②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________; (2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
要对一块长60m、宽40m的矩形荒地ABCD进行绿化和硬化. (1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽. (2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB,BC,AD的距离与O2到CD,BC,AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.