(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
如图,(1)在梯形ABCD中,AB∥DC,若∠A=∠B,求证:AD=BC (2)写出(1)的逆命题,并证明。
甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2(米)与行走的时间为x(分钟)之间的函数关系.请根据图像解答下列问题: (1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟; (2)图中点F坐标是(,)、点E坐标是(,); (3)求y1、y2与x之间的函数关系式; (4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?
两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示. (1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形? (2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形? (3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.
种植草莓大户张华现有22吨草莓等售,现有两种销售渠道:一是运往省城直接批发给零售商;二是在本地市场零售.经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:
受客观因素影响,每天只能采用一种销售渠道,草莓必须在10日内售出. (1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发给零售商的草莓量x(吨)之间的函数关系式; (2)由于草莓必须在10日内售完,请你求出x的取值范围; (3)怎样安排这22吨草莓的销售渠道,才能使所获纯利润最大?并求出最大纯利润.
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF、FD. (1)求证:四边形AFDC是平行四边形; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.