如图1,在平面直角坐标系中,已知抛物线
与
轴交于
,
两点,与
轴交于点
.
(1)求抛物线的函数表达式;
(2)若点
是
轴上的一点,且以
,
,
为顶点的三角形与
相似,求点
的坐标;
(3)如图2,
轴与抛物线相交于点
,点
是直线
下方抛物线上的动点,过点
且与
轴平行的直线与
,
分别相交于点
,
,试探究当点
运动到何处时,四边形
的面积最大,求点
的坐标及最大面积;
(4)若点
为抛物线的顶点,点
是该抛物线上的一点,在
轴,
轴上分别找点
,
,使四边形
的周长最小,求出点
,
的坐标.