已知线段的端点的坐标为,端点在圆:上运动。(1)求线段的中点的轨迹方程;(2)过点的直线与圆有两个交点,弦的长为,求直线的方程。
在平行四边形 A B C D 中, A B = B D = C D = 1 , A B ⊥ B D , C D ⊥ B D .将 △ A B D 沿 B D 折起,使得平面 A B D ⊥ 平面 B C D ,如图. (1)求证: A B ⊥ C D ; (2)若 M 为 A D 中点,求直线 A D 与平面 M B C 所成角的正弦值.
已知函数. (1)若,且,求的值; (2)求函数的最小正周期及单调递增区间.
如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.(1)求证:AC⊥平面BDE;(2)求二面角F-BE-D的余弦值;(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明:B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1夹角的正弦值.