在平行四边形 A B C D 中, A B = B D = C D = 1 , A B ⊥ B D , C D ⊥ B D .将 △ A B D 沿 B D 折起,使得平面 A B D ⊥ 平面 B C D ,如图. (1)求证: A B ⊥ C D ; (2)若 M 为 A D 中点,求直线 A D 与平面 M B C 所成角的正弦值.
已知命题方程表示圆;命题双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围.
三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点.(Ⅰ)求证:平面;(Ⅱ)求证:平面.
已知直线,.(Ⅰ)若,求实数的值;(Ⅱ)当时,求直线与之间的距离.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线与曲线交于点(点在第一象限).(Ⅰ)求曲线的方程;(Ⅱ)已知为曲线的左顶点,平行于的直线与曲线相交于两点.判断直线是否关于直线对称,并说明理由.
在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面.(Ⅰ)求证:; (Ⅱ)若二面角为,求的长.