已知点(0,1),,直线、都是圆的切线(点不在轴上).(Ⅰ)求过点且焦点在轴上的抛物线的标准方程;(Ⅱ)过点(1,0)作直线与(Ⅰ)中的抛物线相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由
某商店销售洗衣粉,年销售总量为6000包,每包进价2.8元,销售价3.4元.全年分若干次进货,每次进货均为包.已知每次进货运输劳务费为62.5元,全年保管费为1.5元.(1)把该店经销洗衣粉一年的利润(元)表示为每次进货量(包)的函数,并指出函数的定义域;(2)为了使利润最大化,问每次该进货多少包?
设是定义在上函数,且对任意,当时,都有成立.解不等式.
解方程.
已知, 试用表示.
已知函数的定义域为R,对任意,均有,且对任意都有.(1)试证明:函数在R上是单调函数;(2)判断的奇偶性,并证明;(3)解不等式;(4)试求函数在上的值域.