已知点(0,1),,直线、都是圆的切线(点不在轴上).(Ⅰ)求过点且焦点在轴上的抛物线的标准方程;(Ⅱ)过点(1,0)作直线与(Ⅰ)中的抛物线相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由
为测量某塔的高度,同学甲先在观察点C测得塔顶A在南偏西方向上,仰角为,然后沿南偏东方向前进30米到B点后,测得塔顶A仰角为,试根据同学甲测得的数据计算此塔AD的高度。(其中点A为塔顶,点D为塔顶A在地面上的射影,点B、C、D均在地面上,不考虑同学甲的身高)
△ABC的三个内角A、B、C的对边的长分别为a、b、c,有下列两个条件:(1)a、b、c成等差数列;(2)a、b、c成等比数列,现给出三个结论:(1);(2);(3)。请你选取给定的两个条件中的一个条件为条件,三个结论中的两个为结论,组建一个你认为正确的命题,并证明之。(I)组建的命题为:已知_______________________________________________求证:①__________________________________________②__________________________________________ (II)证明:
2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于千米。设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为小时。求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。
如图,在四边形中,,,,,,求四边形绕旋转一周所成几何体的表面积及体积。
已知为等比数列,,求的通项公式 。