(本小题满分13分)已知直线,圆.(Ⅰ)证明:对任意,直线恒过一定点N,且直线与圆C恒有两个公共点; (Ⅱ)设以CN为直径的圆为圆D(D为CN中点),求证圆D的方程为:(Ⅲ)设直线与圆的交于A、B两点,与圆D:交于点(异于C、N),当变化时,求证为AB的中点.
(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于.(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种曲线;(Ⅱ)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合)试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)已知函数(Ⅰ)当时,求的最小值;(Ⅱ)若函数在区间(0,1)上为单调函数,求实数的取值范围
(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)如图一,是正三角形,是等腰直角三角形,.将沿折起,使得, 如图二,为的中点(Ⅰ)求证:;(Ⅱ)求的面积;(Ⅲ)求三棱锥的体积.
(本题满分13分,第(Ⅰ)问6分,第(Ⅱ)问7分)已知椭圆及直线:.(Ⅰ)当直线和椭圆有公共点时,求实数的取值范围.(Ⅱ)求直线被椭圆截得的最长弦所在的直线方程.
(本题满分13分,第(Ⅰ)7分,第(Ⅱ)问6分)已知函数.(Ⅰ)求函数f(x)的递减区间.(Ⅱ)讨论函数f(x)的极值情况,如有,求出极值.