(本小题满分14分)已知曲线:,数列的首项,且当时,点恒在曲线上,数列满足。(1)试判断数列是否是等差数列?并说明理由;(2)求数列和的通项公式;(3)设数列满足,试比较数列的前项和与2的大小。
如图,正三棱锥的底面边长为,侧棱长为,为棱的中点. (1)求异面直线与所成角的大小(结果用反三角函数值表示); (2)求该三棱锥的体积.
设二次函数,对任意实数,有恒成立;数列满足. (1)求函数的解析式和值域; (2)证明:当时,数列在该区间上是递增数列; (3)已知,是否存在非零整数,使得对任意,都有恒成立,若存在,求之;若不存在,说明理由.
已知函数为奇函数. (1)求常数的值; (2)判断函数的单调性,并说明理由; (3)函数的图象由函数的图象先向右平移2个单位,再向上平移2个单位得到,写出的一个对称中心,若,求的值.
上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元. (1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围; (2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.
在中,已知. (1)求证:; (2)若求角A的大小.